PyTrilinos Users Guide

Development Branch

Bill Spotz
wispotz@sandia.gov
Sandia National Laboratories

28 November 2009

Version: Trilinos 10.0, PyTrilinos 4.2
Copyright: Sandia Corporation, 2009

Abstract

PyTrilinos is a python interface to selected Trilinos packages. The Trilinos Project is a collection of over
30 software packages written primarily in C++4 that provide linear-, nonlinear-, and eigen-solvers, along
with preconditioners and supporting utilities, that are object-oriented, parallel and serial, for sparse
and dense problems. PyTrilinos is one of those packages, and provides python interfaces to the most
popular and important Trilinos packages.

Contents
1 Introduction 2
2 PyTrilinos Prerequisites 3
3 Building PyTrilinos 3
4 Known Issues 4
5 PyTrilinos Tutorial 4
5.1 Epetra o 5
5.2 Teuchos e 7
5.3 EpetraExt Lo e 8
5.4 TriUtils 8
5.5 AIESOS e 9
5.6 AztecOO . . . 9
5.7 ML . . 10
6 PyTrilinos.Teuchos 10
6.1 ParameterList e 11
6.2 XML Supporto e 13
7 PyTrilinos.Epetra 14
7.1 Fundamental Classes 0 0 0 e e e e e e e e e e 14
7.2 Communicators v v o e e e e e e e e e e e e e e e e e e e 15
T3 Maps. . . .o e 15

T4 Vectors . . . o o o e e e e e e 16

7.5 SerialDense Classes o .o 19
7.6 Graphs. e 20
T.7 Operators e 20
8 PyTrilinos.EpetraExt 24
8.1 Graph Coloring Classes o o it e 24
8.2 Imput Functions e 25
8.3 Output Functions 25
8.4 Input/Output Classes i 25
8.5 Matrix-Matrix Functions L Lo 26
8.6 Model Evaluator Classes 26
9 PyTrilinos.TriUtils 26
10 PyTrilinos.Galeri 27
11 PyTrilinos. Amesos 27
12 PyTrilinos.AztecOO 27
13 PyTrilinos.IFPACK 27
14 PyTrilinos.ML 28
15 PyTrilinos. NOX 28
16 PyTrilinos. LOCA 30
17 PyTrilinos.Anasazi 30
18 PyTrilinos.Thyra 31

1 Introduction

PyTrilinos is a python interface to selected Trilinos packages. The Trilinos Project is a collection of over
30 software packages written primarily in C++4 that provide linear-, nonlinear-, and eigen-solvers, along
with preconditioners and supporting utilities, that are object-oriented, parallel and serial, for sparse
and dense problems. PyTrilinos is one of those packages, and provides python wrappers to the following
packages:

Package Description

Teuchos Fundamental tools package

Epetra Linear algebra services

TriUtils Testing utilities

Epetrakxt Extensions to Epetra

Pliris Dense solver package

AztecOO Iterative linear solvers

Galeri Example processor maps and matrices
Amesos Direct linear solvers

Package Description

IFPACK Incomplete factorization preconditioning
Komplex Complex linear solvers

Anasazi Eigensolvers

ML Multi-level preconditioners

NOX Nonlinear solvers

LOCA Continuation algorithms (disabled)

There are a number of ways to obtain PyTrilinos documentation. You should start with the PyTrili-
nos Tutorial section and consult the Frequently Asked Questions web page for any initial questions.

Running python interactively, you can use the help() or dir() functions on PyTrilinos modules,
classes, methods or objects. Within a UNIX shell, you can run pydoc on any class in the PyTrilinos
hierarchy.

If the python documentation strings do not provide sufficient information, then you should consult
this documentation, specifically the sections referring to individual PyTrilinos modules. If the class
or method you are interested in does not appear within these sections, then use the Trilinos C++
documention, as the C++ and python interfaces are kept analogous whenever possible.

2 PyTrilinos Prerequisites

To build PyTrilinos, you must have the following installed:

e Python 2.3 or higher. Some packages require that the python interpreter be able to distinguish
between boolean and integer values. This support was first provided in python 2.3. PyTrilinos
has been upgraded to work with python 2.6.

e The numpy python module. We recommend version 1.0.1 or higher, but backward compatibility
has been maintained with versions 0.9.x.

e SWIG 1.3.39 or higher. SWIG is the Simple Wrapper and Interface Generator, and is the
workhorse for generating the python interface to Trilinos packages. As of this writing, version
1.3.39 is the current release version.

3 Building PyTrilinos

For release 10.0, all of Trilinos has converted from an autotools build system to a CMake build system.
CMake can generate several different types of build systems, from the familiar Makefile systems, to
Windows Visual Studio Pro systems and Mac OS X XCode systems. This obviously allows Trilinos an
entry to Windows platforms. In addition, the autotools version of Trilinos did not support libtool, so
the adoption of CMake provides a new and robust support for shared Trilinos libraries.

From the point of view of PyTrilinos, the move to CMake provides for robust and portable shared
library support. Shared libraries have been required for PyTrilinos since release 9.0, so this is an
important advance. Unfortunately, this portability does not yet extend to Windows, as this capability
will require some additional work on all of Trilinos. Therefore, PyTrilinos is not yet available under
Windows.

To build PyTrilinos, cmake should be run at the top build directory level with the options:

-D Trilinos_ENABLE_PyTrilinos:BOOL=0N
-D BUILD_SHARED_LIBS:BOOL=0N

http://trilinos.sandia.gov/packages/pytrilinos/development/Tutorial.html
http://trilinos.sandia.gov/packages/pytrilinos/development/Tutorial.html
http://trilinos.sandia.gov/packages/pytrilinos/faq.html
http://trilinos.sandia.gov
http://trilinos.sandia.gov
http://www.python.org
http://numpy.scipy.org
http://www.swig.org

Turning the shared libraries on explicitly is required because the Trilinos policy is to not turn on
shared libraries implicitly. Turning PyTrilinos on will build python modules for every Trilinos package
that has python wrappers defined. If you want to ensure that every available PyTrilinos module is built,
you should use the option:

-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=0N

This is currently the configuration used by PyTrilinos developers to test the package, so it should
be considered a safe way to build PyTrilinos.

Previously, you had to set the environment variable LD_LIBRARY_PATH (DYLD_LIBRARY_PATH on Mac
0OS X) in order to run PyTrilinos tests. This requirement has been lifted with the adoption of CMake.

4 Known Issues

e 64-bit. We routinely build PyTrilinos successfully on a 64-bit platform. PyTrilinos for Trilinos
release 10.0 may also require that the third-party libraries must be linked as shared libraries as
well, depending on the platform.

e MPICH. PyTrilinos has been successfully built and run using Open MPI (formerly LAM /MPI),
but MPICH seems to give it problems. Apparently the MPICH version of mpirun adds command-
line arguments to the invocation of the executable, and our python test scripts do not currently
handle these properly.

5 PyTrilinos Tutorial

PyTrilinos is a collection of python modules that allows a python programmer to access selected
Trilinos packages, either dynamically or within a script. For example, once PyTrilinos is installed,
a user running python interactively who wanted to gain access to Epetra classes would type

>>> from PyTrilinos import Epetra

To import a PyTrilinos module, use the from PyTrilinos import <module> syntax, where <mod-
ule> generally corresponds to the Trilinos namespace you want to access. (Note the Epetra C++
package does not use namespaces, and a design decision was made to strip the Epetra_ prefix from
Epetra classes and put them in a python namespace Epetra).

This tutorial will touch on the following packages:

e Epetra

e Teuchos

EpetrakExt
TriUtils

o Amesos
o AztecOO
e ML

No package is completely wrapped. See the python dir() or help() function or the PyTrilinos web
documentation for a list of those classes within each package that are wrapped.

PyTrilinos supports MPI, allowing for parallel python scripts. The Epetra.PyComm() function
will return an Epetra_MpiComm communicator if Trilinos was built with MPI support, and an Epe-
tra_SerialComm communicator otherwise. In addition, if Trilinos was configured with MPI support,
then the Epetra module will internally call MPI_Init() when imported and register MPI_Finalize ()
with the atexit python module. Thus, scripts can be written for either environment transparently.

http://trilinos.sandia.gov/packages/pytrilinos/documentation.html
http://trilinos.sandia.gov/packages/pytrilinos/documentation.html

5.1 Epetra

To see what is available in the Epetra namespace imported above, do a
>>> dir(Epetra)

This will print a list of all the attributes (classes, functions and objects) in the namespace. Currently,
you will get a list of well over 600 strings. Some of these will be familiar Epetra names (with the Epetra_
prefix removed), such as >SerialComm’. A SerialComm communicator can be created with

>>> comm = Epetra.SerialComm()

This object has (almost) all the methods of the C++ Epetra_SerialComm class and is recognized
internally by python as an Epetra_SerialComm object. The dir() function works on objects, too:

>>> dir (comm)

gives a (much shorter) list of the attributes for comm, including all of the methods that can be called
on the object. For example,

>>> comm.NumProc ()
1

>>> comm.MyPID()

0

>>> comm.Label ()
’Epetra: :Comm’

For more detailed help, use
>>> help(comm)

or access the documentation pages of the appropriate Trilinos package. PyTrilinos provides a
wrapper for the Epetra_MpiComm class and introduces the Epetra.PyComm() function, that returns an
Epetra_MpiComm object if Trilinos was configured with MPI support and an Epetra_SerialComm
otherwise.

We can use comm to create an Epetra_Map (which provides support for distributing global indexes
across processors) for a map with 9 elements, strting with index 0, using communicator comm, by typing

>>> map = Epetra.Map(9,0,comm)

Typically, PyTrilinos classes support a python __str__() method, which internally calls the ob-
ject’s Print () method (or print method, as appropriate) and is in turn used by the python print
command:

>>> print map

Number of Global Elements = 9
Number of Global Points = 9

Maximum of all GIDs =8
Minimum of all GIDs =0
Index Base =0
Constant Element Size =1
Number of Local Elements =9
Number of Local Points = 9

Maximum of my GIDs =8
Minimum of my GIDs =0

Local Index Global Index
0 0

=
<
e
=
o

O O O O O OO oo
~N O O WN -
O ~NO O WN -

8

The Print () (or print) methods typically work by providing a python file object, default sys. stdout,
where the C++ classes expect a stream.
We can now use map to create an Epetra_Vector:

>>> vect = Epetra.Vector (map)

The Epetra.Vector class actually inherits from both the Epetra_Vector C++ class and the User-
Array python class from the numpy module. The constructors ensure that both base classes point to the
same data buffer. Thus an Epetra.Vector has all the methods and capabilities of an Epetra_Vector,
plus the capabilities of a python array:

>>> vect[4] = 3.14

>>> print vect

[o. 0. 0. 0. 3.14 0. 0. 0. 0. 1]
>>> vect.shape = (3,3)

>>> print vect

([o. 0. 0. 1]
[0. 3.14 0.]
[0. 0. 0. 11

>>> vect[2,2] = 2.718
>>> print vect

[[o. 0. 0.]
[0. 3.14 0.]
[0. 0. 2.718]]

Epetra also allows the creation of (compressed row) sparse matrices. Let us consider here the defini-
tion of a matrix corresponding to the discretization of a 1D Laplace problem on a regular Cartesian grid.
We store the matrix as an Epetra.CrsMatrix, whose constructor requires a map, and an estimation of
the number of nonzeros per row (in this instance, 3):

>>> A = Epetra.CrsMatrix(Epetra.Copy,map,3)

The argument Epetra.Copy specifies CopyMode; see the Epetra documentation for more details.
We can now create the matrix, by adding one row at a time. For each row, indices contains global
column indices, and values the corresponding values.

>>> numLocalRows = map.NumMyElements()
>>> for 1lid in range(numLocalRows):
gid = map.GID(1lid)
if gid == 0:
indices = [gid, gid + 1]
values = [2.0, -1.0]
elif gid == n - 1:
indices = [gid, gid - 1]
values = [2.0, -1.0]

"http://trilinos.sandia.gov/packages/epetra"

else:

indices = [gid, gid - 1, gid + 1]

values [2.0, -1.0 , -1.0]
A.InsertGlobalValues(lid, values, indices)

Finally, we transform the matrix representation into one based on local indices. The transformation
is required in order to perform efficient parallel matrix-vector products and other matrix operations.

>>> ierr = A.FillComplete()

Once the matrix, the solution vector (x) and the right-hand side vector (b) have been created, it is
convenient to store them in an Epetra.LinearProblem object, which can be created either as

>>> problem = Epetra.LinearProblem(A, x, b)
or as follows:

>>> problem = Epetra.LinearProblem()
>>> problem.SetOperator (4)

>>> problem.SetLHS (x)

>>> problem.SetRHS (b)

Methods GetMatrix (), GetLHS() and GetRHS() can be used to extract the linear system matrix,
the solution vector, and the right-hand side vector, respectively.

5.2 Teuchos

The primary purpose for PyTrilinos.Teuchos is support for the ParameterList class, which is used
by several Trilinos packages for setting solution parameters, flags and output behavior. Often, this is
handled implicitly, as PyTrilinos has been designed to accept python dictionaries in place of Param-
eterList objects. However, you can build a ParameterList directly:

>>> from PyTrilinos import Teuchos
>>> pList = Teuchos.ParameterList()
>>> pList.set("maxiters", 100)

>>> pList.set("tol", 1.0e-6)

>>> pList.set("precond", "ILUT")

The python version of ParameterList is augmented to behave somewhat like dictionaries:

>>> for name in pList:
print name, ":", pList[name]
maxiters : 100

precond : ILUT

tol : 1.0e-6

You can convert a ParameterList to an XMLObject:

>>> writer = Teuchos.XMLParameterListWriter()

>>> xmlObj = writer.toXML(pList)

>>> print xml0bj

<ParameterList>

<Parameter name="maxiters" type="int" value="100"/>
<Parameter name="precond" type="string" value="ILUT"/>
<Parameter name="tol" type="double" value="1e-06"/>
</ParameterList>

>>> open("params.xml","w") .write(xmlObj.toStr())

You can also read an XML ParameterList from disk:

>>> source = Teuchos.FileInputSource("params.xml")
>>> xmlObj = source.getObject()

>>> reader = Teuchos.XMLParameterListReader ()

>>> pList reader.toParameterList (xml0bj)

5.3 EpetraExt

Module EpetraExt contains several utilities to read and write Epetra objects, in particular maps,
vectors, and matrices.
An Epetra.Map object can be saved to a file using the command

>>> from PyTrilinos import EpetraExt
>>> filename = "map.mm"
>>> EpetraExt.BlockMapToMatrixMarketFile(filename, map)

or can be read from a file as
>>> (ierr, map2) = EpetraExt.MatrixMarketFileToBlockMap(filename, comm)

where ierr is the return error code. Analogously, Epetra.MultiVector and Epetra.CrsMatrix
objects can be saved in a file as follows:

>>> EpetraExt.MultiVectorToMatrixMarketFile("x.mm", x)
>>> EpetraExt.RowMatrixToMatrixMarketFile("A.mm", A)

then read as

>>> (ierr, x2)
>>> (ierr, A2)

EpetraExt.MatrixMarketFileToMultiVector("x.mm", map)
EpetraExt.MatrixMarketFileToCrsMatrix("A.mm", map)

These functions are a powerful tool to exchange data between codes written in C++ using Trilinos
and codes written in python using PyTrilinos.
See the EpetraExt documentation for more details.

5.4 TriUtils
This module, imported with the command
>>> from PyTrilinos import TriUtils

allows the creation of several matrices, in a way that mimics the MATLAB gallery function, and
it can be useful for examples and testing.

Several matrices can be easily generated using module TriUtils. For details, we refer to the
Trilinos tutorial (Chapter 5). Here, we just show how to generate a matrix corresponding to a 3D
Laplacian on a structured Cartesian grid. Let nx, ny, nz be the number of nodes along the z-, y- and
z-axes, respectively, and comm be the communicator previously created (see the Epetra module). Then,
we can simply write:

>>> nx = 100

>>> ny = 100

>>> nz = 100

>>> gallery = TriUtils.CrsMatrixGallery("laplace_3d", comm)
>>> gallery.Set("nx", nx)

>>> gallery.Set("ny", ny)

>>> gallery.Set("nz", ny)

"http://trilinos.sandia.gov/packages/epetraext"

The linear system matrix, solution and right-hand side are obtained as

>>> A = gallery.GetMatrix()
>>> x = gallery.GetStartingSolution()
>>> b = gallery.GetRHS()

These objects are automatically destroyed when the gallery object is deleted. See the TriUtils
documentation for more details. Note also that there is also a more advanced gallery of test and
example problems available in the PyTrilinos.Galeri module.

5.5 Amesos

All Amesos objects are constructed from the function class Amesos. The main goal of this class is to
allow the user to select any supported and enabled direct solver, simply by changing an input parameter.
Let us suppose that Amesos has been configured and compiled with support for SuperLU. To solve a
linear system with SuperLU, we first need to create a Solver object,

>>> from PyTrilinos import Amesos, Epetra
>>> factory = Amesos.Factory()
>>> solver = factory.Create("Superlu", problem)

Then, we can perform the symbolic and numeric factorizations using methods

>>> solver.SymbolicFactorization()
>>> solver.NumericFactorization()

The numeric factorization phase will check whether a symbolic factorization exists or not. If not,
method SymbolicFactorization() is invoked. Solution is computed using

>>> solver.Solve()

The solution phase will check whether a numeric factorization exists or not. If not, method
NumericFactorization() is called. Users must provide the nonzero structure of the matrix for the
symbolic phase, and the actual nonzero values for the numeric factorization. Right-hand side and
solution vectors must be set before the solution phase.

Note that using the Amesos module the user can use within Python the following packages: KLU,
LAPACK, UMFPACK, SuperLU, SuperLU_DIST, TAUCS, PARDISO, DSCPACK, MUMPS, DSCPACK. See the Amesos
documentation for more details.

5.6 AztecOO

Often, large sparse and distributed linear systems are solved using iterative solvers of Krylov type,
like for example conjugate gradient or GMRES. Within PyTrilinos, iterative solvers are accessed via
the Aztec00 module. As an example, let us consider the set of instructions required to adopt a non-
preconditioned CG, with 1550 maximum iterations and a tolerance of 10°(-5) on the relative residual:

>>> from PyTrilinos import AztecO0

>>> solver = Aztec00.Aztec00(4A, x, b)

>>> solver.SetAztecOption(Aztec00.AZ_solver, Aztec00.AZ_cg)
>>> solver.SetAztecOption(Aztec00.AZ_precond, Aztec00.AZ_none)
>>> solver.Iterate(1550, 1le-5)

Non-preconditioned methods rarely converge. Aztec00 offers one-level overlapping domain decom-
position preconditioner (with exact and inexact subdomain solvers) and multilevel preconditioners (see
the ML module overview). The first can be specified as follows:

"http://trilinos.sandia.gov/packages/triutils"
"http://trilinos.sandia.gov/packages/triutils"
"http://trilinos.sandia.gov/packages/amesos"
"http://trilinos.sandia.gov/packages/amesos"

>>> solver.SetAztecOption(Aztec00.AZ_precond, Aztec00.AZ_dom_decomp)
>>> solver.SetAztecOption(Aztec00.AZ_subdomain_solve, Aztec00.AZ_ilu)
>>> solver.SetAztecOption(Aztec00.AZ_overalp, 1)

>>> solver.SetAztecOption(Aztec00.AZ_graph £fill, 1)

For more details on the available parameters, see the AztecOO documentation. Note also that
Teuchos.ParameterList is now supported by Aztec00, so you can set the previous options equivalently
with

>>> solver.SetParameters({"precond": "dom_decomp",
"subdomain_solve": "ilu",
"overlap": 1,
"graph_fill": 13})

5.7 ML

To define a multilevel preconditioner as defined by the ML package, we first have to set up the re-
quired parameters in a python dictionary. A list of supported parameter can be found in the ML user’s
guide. Here, we specify 3 maximum levels, verbose output (10), and symmetric Gauss-Seidel smoother.
Aggregates are computed using the Uncoupled scheme.

>>> from PyTrilinos import ML
>>> mllist = {

"max levels" : 3,

"output" : 10,

"smoother: type" : "symmetric Gauss-Seidel",
"aggregation: type" : "Uncoupled"

.}
Then, we create the preconditioner and compute it,

>>> prec = ML.MultiLevelPreconditioner(A, False)
>>> prec.SetParameterList (mlList)
>>> prec.ComputePreconditioner ()

Finally, we set up the solver, specifying prec as the preconditioner:

>>> solver = Aztec00.Aztec00(A, x, b)

>>> solver.SetPrecOperator (prec)

>>> solver.SetAztecOption(Aztec00.AZ_solver, Aztec00.AZ_cg)
>>> solver.SetAztecOption(Aztec00.AZ_output, 16)

>>> solver.Iterate(1550, 1le-5)

Please check the ML documentation for more details.

6 PyTrilinos.Teuchos

The C++ version of the Teuchos package provides a large variety of tools and utilities. Many of these
tools and utilities are already supported in python by standard library modules. As a result, much of
Teuchos, such as the command-line interpreter, has not been given a python interface.

What has been wrapped centers around the ParameterList class, an important utility class that
is used by several Trilinos packages for communicating arbitrary-type parameters between users and
packages. The classes XMLObject, XMLParameterListWriter and XMLParameterListReader are used to
convert between XML and ParameterList objects. The classes XMLInputSource, FileInputSource,
and StringInputSource can be used to convert text to XML objects. The Teuchos communicator
classes, Comm, SerialComm, MpiComm and DefaultComm are also wrapped.

10

"http://trilinos.sandia.gov/packages/aztecoo"
"http://trilinos.sandia.gov/packages/ml"

Often, the Teuchos module is invisible to the user. The ParameterList class is analagous to the
python dictionary (with the restriction that the dictionary keys must be strings), and python program-
mers can provide a python dictionary wherever a ParameterList is expected. Teuchos is imported
by the package that uses the ParameterLists and converts between dictionaries and ParameterLists
automatically.

The user can create a Teuchos.ParameterList directly, using the constructor, set and sublist
methods, if he so chooses, and methods that accept ParameterLists will work as expected. It is really
just a question of verbosity and elegance that argues in favor of using a python dictionary.

The python implementation of the ParameterList class has been expanded extensively. Its con-
structor can accept a python dictionary, and several methods and operators have been added to the
class so that it behaves somewhat like a dictionary.

C++ ParameterLists are designed to support parameters of arbitrary type. The python imple-
mentation supports a subset of types a priori :

Python type Dir C/CH+ type
bool <-> bool

int <-> int

float <-> double

str <-- char *

str <-> std::string
dict -> ParameterList
ParameterList <-> ParameterList

The C++ ParameterList class supports begin() and end () methods for iterating over the param-
eters. These methods are disabled in the python implementation, in favor of the dictionary iterator
methods: __iter__(), iteritems(), iterkeys() and itervalues().

6.1 ParameterList

The ParameterList class is augmented to behave somewhat like a python dictionary. Here are the
following differences between the C++ and python implementations:

e Ignored methods: begin(), end(), entry (), getEntryPtr(), getPtr(), isType (), name (ConstIterator)
and setEntry(Q).

e Dictionary constructors. A ParameterList can be constructed using a dictionary:
plist = Teuchos.ParameterList(dict[,string])

where dict is a dictionary whose keys are all strings and whose values are of types supported in
the above table. The string name argument is optional and defaults to "ANONYMQOUS".

e Set methods. The templated C++ set () method is replaced in python with a method that takes
a string name and a python object of supported type. For example:

plist = Teuchos.ParameterList ()
plist.set("b",True)
plist.set("i",10)
plist.set("f",2.718)
plist.set("s","Trilinos")
plist.set("d",{"a":1, "b":2})

11

e Get methods. The templated C++ get() method is replaced in python with a method that
returns a python object. From the previous example:

print plist.get("f")
print plist.get("d")

will output:
2.718
{’a’: 1, ’b’: 2}
e The setParameters() method can take either a ParameterList or a python dictionary as its

argument. The ParameterList is updated to contain all of the entries of the argument.

e Printing. Since print is a python keyword, the print () C++ method has been renamed _print
in python. It takes an optional file argument that defaults to standard output. Its output is the
same as the C++ implementation.

The __str__() method returns a string representation of the ParameterList as though it were

a python dictionary. The python eval function applied to the output of __str__() will produce
an equivalent dictionary.

The __repr__() method returns the __str__() output encapsulated by ParameterList(...).
The python eval function applied to the output of __repr__() will produce an equivalent
ParameterList.

e The unused () method in python takes an optional python file object as its argument, defaulting
to standard output.

e Parameter type determination. With the templated isType() methods disabled, type determi-
nation of python ParameterList entries is accomplished with the type () method, which returns
python type objects. From our previous example:

print plist.type("b")
print plist.type("s")

results in:

<type ’bool’>
<type ’str’>

A non-existent key given as the argument will raise a KeyError exception.

e An asDict() method has been added that returns the contents of the ParameterList converted
to a python dictionary.

The following python dictionary methods and operators are added to the python implementation of
the ParameterList class:

e Comparison. The == and != comparison operators work for ParameterList objects. Comparison
against other ParameterList objects, as well as python dictionaries, is supported. Less-than and
greater-than operators also work, mimicking the default dictionary behavior, but are less useful.

e The in operator also works, searching the parameter names:

print "a" in plist
print "b" in plist

produces:

12

False
True

e Length method. The python len() function works on ParameterLists:
print len(plist)
gives:
5
e Iteration. To iterate over the parameters in a ParameterList, treat it like a dictionary:

for key in plist:
print key, ":", plist[key]

will result in the output:

b : True

d: {’a’: 1, ’b’: 2}
f : 2.718

i 10

s : Trilinos

Note that the order of the parameters is somewhat indeterminant, as with dictionaries, because
the iteration object is obtained from an equivalent dictionary, and dictionaries are ordered by
hash function.

e Index notation. Like dictionaries, parameters can be set and gotten using square brackets:

plist["zero"] = 0
e = plist["f"]

e Update methods. An update() method has been added that can accept either a ParameterList
or a python dictionary. Otherwise, it behaves just as the dictionary method, which is functionally
equivalent to the setParameters() method.

e Other new methods for the python implementation that behave just as with dictionaries: has_key (),
items(), iteritems(), iterkeys(), itervalues(), keys() and values().

Note that the C++ implementation of the ParameterList class does not support parameter deletion.
Therefore, python dictionary methods that delete items, such as pop() or __delitem__(), have not
been added to the ParameterList class.

6.2 XML Support
PyTrilinos.Teuchos supports several classes related to XML. They are:

e XMLObject - The python implementation of this class is largely unchanged from the C++ interface,
with the following exceptions:

— The constructor that takes an XMLObjectImplem#* argument has been removed. The XMLObjectImplem
class is hidden from the python user.

— A __str__() method has been added, so that it is possible to print an XMLObject object.
It returns the same string as the toString() method, but if toString() raises an exception
(such as when the XMLObject is empty), the __str__() method returns the empty string.

e XMLParameterListWriter - This simple class has been implemented unchanged from its C++
interface. Its purpose is to convert ParameterList objects into XMLObject objects.

13

XMLParameterListReader - This simple class has been implemented unchanged from its C++
interface. Its purpose is to convert XMLObject objects into ParameterList objects.

XMLInputSource - This is a base class from which FileInputSource and StringInputSource
derive. The source () method is ignored.

FileInputSource - This is a class for reading an XML object from a file. The source () method
is ignored.

StringInputSource - This is a class for reading an XML object from a string. The source()
method is ignored.

7 PyTrilinos.Epetra

The Trilinos Epetra package, for historical portability reasons, does not use namespaces. Instead,

“Epetra_” is prepended to every class and function name. The python implementation, however, does

utilize the Epetra namespace, and the “Epetra_” prefix has been stripped from all of the class and

function names. Therefore, Epetra_0bject in C++ is implemented as Epetra.0Object in python.
Epetra supports a large number of classes. They can be categorized as follows:

7.1

Fundamental Classes
Communicators
Maps

Vectors

SerialDense Classes
Graphs

Operators

Fundamental Classes

Epetra.0bject: this is the base class for the majority of Epetra classes. In C++, it supports
a Print () method that takes an output stream as an argument. In the python implementation
for this and all derived classes, this method takes an optional file object argument whose default
value is standard out.

A __str__() method has also been added to the Epetra.0bject class that returns the results

of Print () in a string, so that the print command will work on Epetra objects. The Print ()
methods are designed to run correctly in parallel, so do not execute print on an Epetra object
conditionally on the processor number. For example, do not do

if comm.MyPID() == 0: print epetra_obj
or it will hang your code.

Epetra.Util: The Sort() method is not supported.

14

7.2 Communicators

If PyTrilinos was compiled with MPI support, then MPI_Init() will be called internally when the
Epetra module is imported (the Epetra module will also arrange for MPI_Finalize () to be called upon
termination of the python interpreter).

Parallelism in Trilinos (and PyTrilinos) is largely encapsulated in the Epetra communicator
classes. In addition to the base class Epetra.Comm and the derived Epetra.SerialComm and Epetra.MpiComm
classes, the Epetra.PyComm() function has been added to the python implementation that returns the
appropriate communicator type, depending on whether or not PyTrilinos was compiled with MPI
support.

The python interfaces for various communicator methods are slightly different than the C++ inter-
faces. If comm is an Epetra communicator, then the following methods have the given interfaces:

e comm.Broadcast (numpy.ndarray obj, int root)

e comm.GatherAll(PyObject obj) -> numpy.ndarray
e comm.SumAll(PyObject obj) -> numpy.ndarray

e comm.MaxAl1l(PyObject obj) -> numpy.ndarray

e comm.MinAl1(PyObject obj) -> numpy.ndarray

e comm.ScanSum(PyObject obj) -> numpy.ndarray

In the Broadcast method, the numpy.ndarray data from the root processor is broadcast in-place
to all of the other processors. Arrays of ints, longs, doubles and now strings are supported. In the
remaining methods, the PyObject obj input argument must be a python object that can be converted
to an integer, long, or double numpy.ndarray, and the return value is a numpy.ndarray of the same
type and size. In C++, these routines have integer error return codes. In python, a non-zero return
code is converted to an exception.

7.3 Maps

Epetra maps describe the distribution of global vector indexes across processors. The python interface
for the following classes is slightly modified from the C++ implementations:

e Epetra.BlockMap is the (concrete) base class for other Epetra maps. It supports a given number
of global elements, where each element can support a (possibly variable) number of data points.
But it is the elements that are distributed among the processors. The following constructors are
supported:

— BlockMap (numGE, elSize, iBase, comm)

— BlockMap (numGE, numME, elSize, iBase, comm)

— BlockMap (numGE, myGEs, elSize, iBase, comm)

— BlockMap (numGE, myGEs, elSizes, iBase, comm)

— BlockMap (map)
where comm is an Epetra communicator; numGE is the integer number of global elements; numME
is the integer number of elements on this processor; elSize is the integer element size; iBase is
the integer index base (typically 0 or 1); myGEs is a sequence of integers representing the global

indexes on this processor; elSizes is a sequence of integers representing the number of data points
for each element on this processor; and map is a BlockMap.

Instead of two C++ RemoteIDList methods, there is only one with the following interface:

15

— BlockMap.RemoteIDLiSt(GIDList) -> (PIDList, LIDList, sizeList)

where GIDList is a sequence of integer global IDs, and PIDList, LIDList and sizelList are
numpy .ndarray objects of integers representing the processor IDs, local IDs and element sizes,
respectively. Other BlockMap methods are altered to have the following python interfaces:

— BlockMap.FindLocalElementID(pointID) -> (elementID, elementOffset)

— BlockMap.MyGlobalElements() -> numpy.ndarray

BlockMap.FirstPointInElementList() -> numpy.ndarray
BlockMap.ElementSizeList() -> numpy.ndarray

— BlockMap.PointToElementList () -> numpy.ndarray

e Epetra.Map is a simpler form of BlockMap, in which the size of each element is restricted to 1.
The python implementation supports the following constructors:

— Map(numGE, iBase, comm)

— Map(numGE, numME, iBase, comm)

— Map (numGE, myGEs, iBase, comm)

— Map (map)

where comm is an Epetra communicator; numGE is the integer number of global elements; numME is
the integer number of local elements on this processor; iBase is the integer index base (typically
0 or 1); myGEs is a sequence of integer global indexes on this processor; and map is an Epetra.Map

e Epetra.Export The Export class has the following altered python method interfaces:

— Export
— Export
— Export
— Export
— Export

e Epetra.Import The Import

— Import
— Import
— Import
— Import
— Import

7.4 Vectors

.PermuteFromLIDs() -> numpy.ndarray

.PermuteToLIDs ()
.RemoteLIDs() ->
.ExportLIDs() ->
.ExportPIDs() ->

—-> numpy.ndarray
numpy .ndarray
numpy .ndarray

numpy .ndarray

class has the following altered python method interfaces:

.PermuteFromLIDs() -> numpy.ndarray

.PermuteToLIDs ()
.RemoteLIDs() ->
.ExportLIDs() ->
.ExportPIDs() ->

—-> numpy.ndarray
numpy .ndarray
numpy .ndarray

numpy .ndarray

One of the most fundamental data structures for scientific computing is the contiguous array of homo-
geneous scalars. For scientific python, this data structure has historically been provided by the Numeric
module. This was followed by numarray, which added capabilities Numeric lacked, but never replicated
all of the Numeric module’s functionality. These two modules have now been replaced by the numpy
module, whose purpose is to provide a single multidimensional array module to python, acceptable by
all factions of the scientific python community.

In Epetra, the contiguous array data structure is provided by several vector classes. In general,
these classes lack many of the bells and whistles of numpy.ndarray objects, but they provide at least

16

one unique feature: extensive parallel support. Epetra vectors are assumed to be distributed over one
or more processors, as specified by a map object.

To give PyTrilinos users maximum flexibility, the python implementations of the Epetra vector
classes Epetra.Vector, Epetra.MultiVector, Epetra.FEVector and Epetra.IntVector inherit from
the numpy.1lib.user_array.container class. These classes are thus instances of both Epetra vectors
and numpy .ndarray. The Epetra Print () method provides Epetra output, and the __str__() method
provides numpy output. The key to this approach is providing internal constructors that create an Epetra
vector and a numpy.ndarray that both point to the same data buffer. If you extract a slice from an
Epetra.Vector or Epetra.MultiVector object, the result is a new Epetra. [Multi]Vector with a new
Epetra.Map that reflects the global IDs of the sliced array.

The new constructors, as well as other methods with alternate python interfaces, are described
below:

e Epetra.Vector provides an array of double precision data. PyTrilinos packages will always
interpret an Epetra.Vector as a 1D array, but the python implementation allows any shape that
is legal for the given length of the vector. Its constructors and methods with new interfaces are

— Vector(BlockMap map, bool zeroOut=True)

Create a new Vector with a size and distribution defined by map. Initialize to zero unless
zeroQut is False.

— Vector(BlockMap map, PyObject array)

Create a Vector that uses a PyObject to initialize the data. The array object can be either
a numpy .ndarray or any sequence that can be used to construct a numpy.ndarray, which
then provides the data buffer. The length of the array object on each processor must match
the number of elements on each processor specified by the map. If not, an exception is raised.

— Vector(DataAccess CV, MultiVector source, int index)

Create a Vector by extracting a single vector from a MultiVector, specified by index. CV
should be either Epetra.Copy or Epetra.View.

— Vector(PyObject array)

Convert array to a numpy.ndarray if necessary and use this to provide the data buffer for
a new Vector. The underlying communicator is Epetra.SerialComm, used as the basis for
a simple map.

— Vector(Vector source)
Copy constructor.
— ExtractCopy() -> numpy.ndarray
— ExtractView() -> numpy.ndarray
— Dot (Vector A) -> double
— Norm1() -> double
— Norm2() -> double
— NormInf() -> double
— NormWeighted(Vector weights) -> double
— MinValue() -> double
— MaxValue() -> double
— MeanValue() -> double
— ReplaceGlobalValues(PyObject values, PyObject indices) -> int
— ReplaceGlobalValues(int blockOffset, PyObject values, PyObject indices) -> int
— ReplaceMyValues(PyObject values, PyObject indices) -> int

17

ReplaceMyValues(int blockOffset, PyObject values, PyObject indices) -> int
SumIntoGlobalValues(PyObject values, PyObject indices) -> int
SumIntoGlobalValues(int blockOffset, PyObject values, PyObject indices) -> int
SumIntoMyValues(PyObject values, PyObject indices) -> int

SumIntoMyValues(int blockOffset, PyObject values, PyObject indices) -> int

e Epetra.MultiVector is actually the base class for Vector. PyTrilinos packages will always in-
terpret a MultiVector as a 2D array, but the python implementation allows them to have two
or more dimensions. Thus the shape attribute can be changed to a tuple of integers of length at
least two whose elements’ product is the total size of the array.

MultiVector (BlockMap map, int n, bool zeroOut=True)

Create a new MultiVector with n vectors, with length and distribution according to map.
Initialize to zero unless zeroOut is False.

MultiVector (BlockMap map, PyObject array)

Create a MultiVector that uses a PyObject to initialize the data. The array object is
converted to a numpy.ndarray if necessary, which then provides the data buffer. If the
numpy .ndarray is one-dimensional, it is upcast to 2D with a first dimension of one. The
product of the second and any subsequent dimensions of the array object on each processor
must match the number of elements on each processor specified by the map. If not, an
exception is raised.

MultiVector (DataAccess CV, MultiVector source, PyObject range)

Create a MultiVector by extracting a subset of vectors from a MultiVector. The range
object should evaluate to a sequence of integers that specify the subset. CV should be either
Epetra.Copy or Epetra.View.

MultiVector (PyObject array)

Convert array to a numpy.ndarray if necessary and use this to provide the data buffer for
a new MultiVector. The first dimension of the numpy.ndarray specifies the number of
vectors. If the numpy.ndarray is one-dimensional, it will be upcast to a 2D array with a first
dimension of one. The underlying communicator is Epetra.SerialComm, used as the basis
for a simple map.

MultiVector (MultiVector source)

Copy constructor.

ExtractCopy() -> numpy.ndarray

ExtractView() -> numpy.ndarray

Dot (MultiVector a) -> numpy.ndarray

Norm1() -> numpy.ndarray

Norm2() -> numpy.ndarray

NormInf () -> numpy.ndarray

NormWeighted (MultiVector weights) -> numpy.ndarray
MinValue() -> numpy.ndarray

MaxValue() -> numpy.ndarray

MeanValue() -> numpy.ndarray

e Epetra.FEVector derives from Epetra.MultiVector and provides some methods that are conve-
nient for finite element vector assembly. The C++ version recently implemented the multivector
nature of the FEVector. The python wrappers were updated to reflect this.

18

e Epetra.IntVector provides an array of integers. PyTrilinos packages will always interpret an
Epetra.IntVector as a 1D array, but the python implementation allows any shape that is legal
for the given length of the vector.

IntVector (BlockMap map, bool zeroQut=True)

Create a new IntVector with a size and distribution defined by map. Initialize to zero unless
zeroQOut is False.

IntVector (BlockMap map, PyObject array)

Create an IntVector that uses a PyObject to initialize the data. The array object is
converted to a numpy.ndarray if necessary, which then provides the data buffer. The length
of the array object on each processor must match the number of elements on each processor
specified by the map. If not, an exception is raised.

IntVector (PyObject array)

Convert array to a numpy.ndarray and use this to provide the data buffer for a new
IntVector. The underlying communicator is Epetra.SerialComm, used as the basis for
a simple map.

IntVector (IntVector source)

Copy constructor.

ExtractCopy() -> numpy.ndarray

ExtractView() -> numpy.ndarray

Values() -> numpy.ndarray

7.5 SerialDense Classes

As with Epetra vector objects, several of the Epetra SerialDense objects multiply inherit from the
numpy.lib.user_array.container class. These classes are:

e IntSerialDenseMatrix

e IntSerialDenseVector

e SerialDenseMatrix

e SerialDenseVector

The following SerialDense class methods have an altered calling signature because the python version
is smart enough to determine the dimensions automatically:

SerialDenseSolver.IPIV() -> numpy.ndarray

SerialDenseSolver.A() -> numpy.ndarray

SerialDenseSolver.B() -> numpy.ndarray

SerialDenseSolver.X() -> numpy.ndarray

SerialDenseSolver.AF() -> numpy.ndarray

SerialDenseSolver .FERR() -> numpy.ndarray

SerialDenseSolver.BERR() -> numpy.ndarray

SerialDenseSolver.R() -> numpy.ndarray

SerialDenseSolver.C() -> numpy.ndarray

The SerialDenseSolver.ReciprocalConditionEstimate() method takes no arguments, returns
the double precision result and raises an exception if the underlying C++ int result is nonzero.

19

7.6 Graphs

The CrsGraph class has two new constructors:
e CrsGraph(DataAccess CV, BlockMap rowMap, PyObject numIndicesList, bool staticProfile=False)

e CrsGraph(DataAccess CV, BlockMap rowMap, BlockMap colMap, PyObject numIndicesList,
bool staticProfile=False)

The argument CV is either Epetra.Copy or Epetra.View, rowMap and colMap are maps that describe
the domain decomposition of global row indices and column indices respectively, numIndicesList is a
python sequence of integers that lists the number of non-zeros for each row, and staticProfile is a
boolean that flags whether the number of indices per row is exact or approximate.

The following CrsGraph methods have simplified argument lists:

e CrsGraph.ExtractGlobalRowCopy(int globalRow) -> numpy.ndarray

e CrsGraph.ExtractMyRowCopy(int myRow) -> numpy.ndarray

e CrsGraph.InsertGlobalIndices(int globalRow, PyObject indices) -> int
e CrsGraph.InsertMyIndices(int myRow, PyObject indices) -> int

e CrsGraph.RemoveGlobalIndices(int globalRow, PyObject indices) -> int
e CrsGraph.RemoveMyIndices(int myRow, PyObject indices) -> int

The following CrsGraph methods do not have python wrappers:

e CrsGraph.ExtractGlobalRowView()

e CrsGraph.ExtractMyRowView()

7.7 Operators

Perhaps the simplest Epetra operators to create and use are the CrsMatrix and VbrMatrix. You simply
call their constructors in the normal way, populate them, and then call their FillComplete () methods.
These classes have two new constructors:

e CrsMatrix(DataAccess CV, Map rowMap, PyObject numIndicesList, bool staticProfile=False)

e CrsMatrix(DataAccess CV, Map rowMap, Map colMap, PyObject numIndicesList, bool staticProfile=Fals
and

e VbrMatrix(DataAccess CV, Map rowMap, PyObject numBlockEntriesPerRow)

e VbrMatrix(DataAccess CV, Map rowMap, Map colMap, PyObject numBlockEntriesPerRow)

The argument CV is either Epetra.Copy or Epetra.View, rowMap and colMap are maps that describe
the domain decomposition of global row indices and column indices respectively, numIndicesList is a
python sequence of integers that lists the number of non-zeros for each row, and staticProfile is a
boolean that flags whether the number of indices per row is exact or approximate. For the VbrMatrix
constructors, numBlockEntriesPerRow can be either an interger, constant for all rows, or a sequence
with as many entries as the matrix has rows.

The following CrsMatrix methods have simplified argument lists:

e CrsMatrix.ExtractGlobalRowCopy(int globalRow) -> (numpy.ndarray,numpy.ndarray)

20

e CrsMatrix.ExtractMyRowCopy(int myRow) -> (numpy.ndarray,numpy.ndarray)

e CrsMatrix.InsertGlobalValues(int globalRow, PyObject indices, PyObject values) ->
int

e CrsMatrix.InsertMyValues(int myRow, PyObject indices, PyObject values) -> int

e CrsMatrix.RemoveGlobalValues(int globalRow, PyObject indices, PyObject values) ->
int

e CrsMatrix.RemoveMyValues(int myRow, PyObject indices, PyObject values) -> int

e CrsMatrix.SumIntoGlobalValues(int globalRow, PyObject indices, PyObject values) ->
int

e CrsMatrix.SumIntoMyValues(int myRow, PyObject indices, PyObject values) -> int
The following CrsMatrix methods do not have python wrappers:

e CrsMatrix.ExtractGlobalRowView()

e CrsMatrix.ExtractMyRowView()

The CrsMatrix class also has indexing enabled. Thus, if A is an CrsMatrix, matrix elements can
be assigned with the syntax

>>> Afi,j] = 2.7182818284590451

Under certain conditions, index notation can be used to retrieve single matrix elements (with a row
and column index), or all of the elements in the row (with a single row index). For single matrix elements,
a column map must exist, which can be provided in the constructor, or computed automatically when
FillComplete() is called. To extract row data with a single index, FillComplete () is required to have
been called.

>>> comm = Epetra.PyComm()
>>> map = Epetra.Map(9,0,comm)
>>> A = Epetra.CrsMatrix(Epetra.Copy,map,3)
>>> for gid in map.MyGlobalElements():
1lid = map.LID(gid)
if gid in (0,8): A.InsertGloballndices(lid, [1], [gid])
else: A.InsertGlobalIndices(lid,[-1,2,-1], [gid-1,gid,gid+1])

>>> A.FillComplete()

>>> print A[8,8]

1.0

>>> print A[4]

[0o. 0. 0. -1. 2. -1. 0. 0. 0.]

A more flexible way of defining Epetra operators is to define your own classes by inheriting from
pure virtual Epetra operator classes. The following classes can be sub-classed successfully in python.
That is, you can define a python class that inherits from one of these classes, define the appropriate
methods, such as Apply (), and the infrastructure is in place such that C++ solver routines (such as
the Aztec00.Iterate() method) can call back to your python method successfully.

e Operator

e InvOperator

21

e RowMatrix
e BasicRowMatrix

Python classes derived from these callback-supporting base classes (“directors” in the parlance of
SWIG, which is the tool that generates the wrapper code) must call their base class __init__() method:

from PyTrilinos import Epetra

class MyOperator (Epetra.Operator) :
def __init__(self):

Epetra.Operator.__init__(self)
self.__label = "MyOperator"

At a bare minimum, you must define a Label () method and an Apply () method that support the
argument prototypes found in the Epetra documentation:

def Label(self):
return self.__label
def Apply(self, x, y):

try:
y[:,0 1 =x[:,0]
yl:,1:-1]1 = 2*x[:,1:-1] - x[:,:-2] - x[:,2:]
yl:,-1 1 = x[:,-1]
return O

except Exception, e:
print "A python exception was raised in MyOperator.Apply:"
print e
return -1

A few notes about the Apply () method:

e Arguments x and y will be sent by a C++ solver (such as Aztec00) with C++ type
Epetra_MultiVector. Before they are passed along to your python method, they will
be converted to the numpy-hybrid type Epetra.MultiVector. Hence we are able, within
the method, to access slices of x and y, which is a very efficient way to calculate with
buffers of data.

e Also, because x and y are MultiVector objects, they should be treated as 2-dimensional,
with the first dimension representing the individual vectors. As in this example, this
usually just means making sure the first index is a colon.

e The calculations here are done within a try block. This is because if your Apply ()
accidentally raises an exception, the callback mechanism isn’t currently able to pass
the error message to you. Hence, we catch all exceptions (base class Exception), print
the error message, and return a non-zero error code to tell the calling function that we
failed. This technique is recommended for all callback functions of any complexity. It
adds almost no overhead and is a great help for debugging.

e In this particular example, we have taken advantage of python’s negative indexing
(which indexes from the end of a sequence). For this reason, this operator works on
different size vectors. If the input vectors, x and y, have different shapes, then the
assignment statements will raise an exception, which we will catch, print, and then
inform the calling routine by returning -1.

The operative inheritance chain here is that SrcDistObject and Operator are both base classes for
RowMatrix, which is a base class for BasicRowMap. Each of these classes has virtual methods you may
want to implement with the given input prototypes and output argument:

22

e SrcDistObject

Map() -> BlockMap

e (Operator

SetUseTranspose(bool useTranspose)

UseTranspose() -> bool

Apply (MultiVector x, MultiVector y) -> int
ApplyInverse(MultiVector x, MultiVector y) -> int
HasNormInf () -> bool

NormInf() -> double

Label() -> string

Comm() -> Comm

OperatorDomainMap() -> Map

OperatorRangeMap () -> Map

e RowMatrix

NumMyRowEntries(int myRow, numpy.ndarray numEntries) -> int
MaxNumEntries() -> int

ExtractMyRowCopy(int myRow, int length, numpy.ndarray numEntries, numpy.ndarray
values, numpy.ndarray indices) -> int
ExtractDiagonalCopy(Vector diagonal) -> int

Multiply(bool useTranspose, MultiVector x, MultiVector y) -> int
Solve((bool upper, bool trans, bool unitDiagonal, MultiVector x, MultiVector
y) -> int

InvRowSum(Vector x) -> int

LeftScale(Vector x) -> int

InvColSums(Vector x) -> int

RightScale(Vector x) -> int

Filled() -> bool

NormOne () -> double

NumGlobalNonzeros() -> int

NumGlobalRows() -> int

NumGlobalCols() -> int

NumGlobalDiagonals() -> int

NumMyNonzeros() -> int

NumMyRows () -> int

NumMyCols() -> int

NumMyDiagonals() -> int

LowerTriangular() -> bool

UpperTriangular() -> bool

RowMatrixRowMap() -> Map

RowMatrixColMap() -> Map

RowMatrixImporter() -> Import

Of particular importance to the python interface of the RowMatrix and BasicRowMatrix classes are
the NumMyRowEntries and ExtractMyRowCopy methods, because these method’s C++ argument lists
have output arguments: int &NumEntries, double *Values, and int *Indices. To convert these into
mutable python objects that can properly act as output arguments, these arguments are converted to
numpy .ndarray objects whose data buffers point to the passed-in C4++ data. It is natural to access the
values and indices as arrays with bracket notation for setting values, but the numEntries argument,
which is an array of length 1, must also be accessed this way:

23

def ExtractMyRowCopy(self, myRow, length, numEntries, values, indices):
globalRow = self.RowMatrixRowMap () .GID(myRow)
if globalRow == -1:
return -1
if globalRow == 0 or globalRow == self.NumGlobalRows()-1:
if (length < 1):
return -2

numEntries[0] = 1
values [0] =1.0
indices[0] = myRow
else:
if (length < 3):
return -2

numEntries[0] = 3

values[:3] [-1.0, 2.0, -1.0]

indices[:3] [myRow-1, myRow, myRow+1]
return 0

This example assumes you have properly implemented the RowMatrixRowMap () and NumGlobalRows ()
methods.

8 PyTrilinos.EpetraExt

The EpetraExt package supports a wide variety of extensons to the Epetra package, only a handful of
which have currently been given python wrappers. These wrappers can be categorized as follows:

e Graph Coloring Classes

Input Functions

Output Functions

Input/Output Classes

Matrix-Matrix Functions

Model Evaluator Classes

8.1 Graph Coloring Classes

EpetraExt has two classes for aiding with creating color maps.
e CrsGraph_MapColoring
e CrsGraph_MapColoringIndex

The first is the functor CrsGraph_MapColoring. Note than only the default constructor is currently
supported. Once such an object is created, you can call it with an Epetra.CrsGraph argument to call
a coloring algorithm and obtain an Epetra.MapColoring object.

The second class is the CrsGraph_MapColoringIndex functor. Use an Epetra.MapColoring object
in the constructor and an Epetra.CrsGraph object as the argument when you call it.

24

8.2
[]

Input Functions
MatlabFileToCrsMatrix(str filename, Epetra.Comm) -> Epetra.CrsMatrix
MatrixMarketFileToBlockMap(str filename, Epetra.Comm) -> Epetra.BlockMap

MatrixMarketFileToBlockMaps (str filename, Epetra.Comm) -> (Epetra.BlockMap rowMap,
Epetra.BlockMap colMap, Epetra.BlockMap rangeMap, Epetra.BlockMap domainMap)

MatrixMarketFileToCrsMatrix(str filename, Epetra.Map rowMap, Epetra.Map colMap=None,
Epetra.Map rangeMap=None, Epetra.Map domainMap=None) -> Epetra.CrsMatrix

MatrixMarketFileToMap(str filename, Epetra.Comm) -> Epetra.Map

MatrixMarketFileToMultiVector (str filename, Epetra.BlockMap) -> Epetra.MultiVector

Output Functions
BlockMapToHandle(file handle, Epetra.BlockMap map) -> int

BlockMapToMatrixMarketFile(str filename, Epetra.BlockMap map, str mapName=None, str
descr=None, bool writeHeader=True) —-> int

MultiVectorToHandle(file handle, Epetra.MultiVector) -> int
MultiVectorToMatlabFile(str filename, Epetra.MultiVector) -> int
MultiVectorToMatlabHandle(file handle, Epetra.MultiVector) -> int
MultiVectorToMatrixMarketFile(str filename, Epetra.MultiVector) -> int
MultiVectorToMatrixMarketHandle(file handle, Epetra.MuiltiVector) -> int
RowMatrixToHandle(file handle, Epetra.RowMatrix) -> int
RowMatrixToMatlabFile(str filename, Epetra.RowMatrix) -> int

RowMatrixToMatrixMarketFile(str filename, Epetra.RowMatrix) -> int

Input/Output Classes
HDF5
XMLReader

XMLWriter

The HDF5 and XMLReader classes both support overloaded Read () methods in C++, but these cannot
be type-disambiguated in python. Therefore, the Read () methods are ignored and replaced with python
versions that have the type name in the method. Therefore, if obj is an HDF5 or XMLReader object,

then,

these methods are supported:

obj.ReadMap(str) -> Epetra.Map
obj.ReadMultiVector(str) -> Epetra.MultiVector
obj.ReadCrsGraph(str) -> Epetra.CrsGraph

obj.ReadCrsMatrix(str) -> Epetra.CrsMatrix

In addition, the HDF5 objects support the following additional methods:

obj.ReadBlockMap(str) -> Epetra.BlockMap

obj.ReadIntVector(str) -> Epetra.IntVector

25

8.5

Matrix-Matrix Functions

So far, only addition and multiplication are supported:

e Add(Epetra.CrsMatrix A, bool flag, float valA, Epetra.CrsMatrix B, float valB) ->

8.6

int

Compute B <- valA * A + valB x B. If flag is True, use the transpose of A. B must either have
the structure of A+B or not yet have FillComplete() called on it.

(34

Multiply(Epetra.CrsMatrix A, bool transposeA,
Epetra.CrsMatrix C) -> int

¢ ‘Epetra.CrsMatrix B, bool transposeB,

Compute C <= A * B, where transposeA and transposeB control the transposition of A and B
respectively. C must have the structure of A * B, or not yet have FillComplete () called on it.

Model Evaluator Classes
InArgs

A class that defines and encapsulates the input arguments to the model.

Evaluation

A class that defines how derivatives are evaluated (exactly, approximately, or very approximately).

DerivativeSupport

A class that encapsulates the linearity, multivector status and transpose status of a Derivative.

DerivativeProperties

A class that encapsulates the linearity, rank, and adjoint support of a Derivative.

DerivativeMultiVector

A class that encapsulates a MultiVector, its orientation and its parameter indexes.

Derivative

A class that can represent a derivative object as either an operator or a vector.

OutArgs

A class that defines and encapsulates the output arguments from the model.

ModelEvaluator

The primary model evaluator class. It can be used to define its InArgs and OutArgs, as well as
evaluate the model.

Note that in C++, the first seven classes listed above are nested within the ModelEvaluator class.
This arrangements creates problems when attempting to wrap the outer class, so the nested classes have
been pulled out instead.

9 PyTrilinos.TriUtils

The TriUtils package is a set of utilities for the Trilinos project and is especially useful for testing
purposes. Likewise, the TriUtils module is used by several of the python test and example scripts.
The primary difference between the C++ and python implementations is the function

e ReadHb2Epetra (string, Epetra.Comm) -> (Epetra.Map, Epetra.CrsMatrix, Epetra.Vector

x, Epetra.Vector b, Epetra.Vector exact)

in which the results of the function are returned in a tuple.

26

10 PyTrilinos.Galeri

Galeri functions behave in python essentially as they do in C++. The one exception is the ReadHB
function,

e ReadHB(str filename, Epetra.Comm comm) -> (Epetra.Map map, Epetra.CrsMatrix A, Epetra.Vector
x, Epetra.Vector b, Epetra.Vector exact)

that packs all of its output arguments into a tuple that becomes the return value.

11 PyTrilinos. Amesos

The Amesos module supports the following third-party solver packages, assuming you have them in-
stalled on your system and have configured Trilinos and Amesos to use them.

e LAPACK

e KLU

e UMFPACK

e ScaLAPACK

e SuperLU

e SuperLUDist
e TAUCS

e Pardiso

e DSCPACK

e MUMPS

The python interface for Amesos is essentially the same as the C++ interface. This means that you
need an Epetra.LinearProblem class that contains your right-hand side and solution Epetra.Vector
or Epetra.MultiVector, and the linear system Epetra.RowMatrix. Note that the Amesos module
allows FORTRAN9O codes such as MUMPS to be used interactively!

12 PyTrilinos.AztecOO

The python interface to Aztec00 does not differ significantly from the C++ interface. Note that the
AztecOO-Teuchos support, allowing the use of Teuchos.ParameterList objects to specify Aztec00 op-
tions, is implemented for the python interface when both Teuchos and AztecOO are enabled. Note also
that PyTrilinos performs automatic conversions between python dictionaries and Teuchos: :ParameterList
objects.

13 PyTrilinos.IFPACK

The python interface for IFPACK is essentially the same as the C++ interface.

27

14 PyTrilinos.ML

The most notable difference between ML and its Python module is in the construction of the precon-
ditioner. Given an Epetra.RowMatrix object (say, A), first you need a set of parameters, specified in a
Python dictionary:

mllList = {"max levels" . 3,
"output" : 10,
"smoother: type" : "symmetric Gauss-Seidel",
"aggregation: type" : "Uncoupled"
b

All parameters are specified as in C++; please check the ML page for more details.
Then, you can create the preconditioner (derived from the Epetra.0Operator class) as follows:

prec = ML.MultilevelPreconditioner(A, False)
prec.SetParameterList (mlList)
prec.ComputePreconditioner ()

Note that you first need to instantiate prec using False, then let prec parse the parameters con-
tained in m1List, and finally build the preconditioner. Using prec as a preconditioner for Aztec00 may
be done as simply as:

solver = Aztec00.AztecO00(A, x, y)
solver.SetPrecOperator (prec)
solver.SetAztecOption(Aztec00.AZ_solver, Aztec00.AZ_cg);
solver.SetAztecOption(Aztec00.AZ_output, 16);

err = solver.Iterate(1550, 1e-5)

15 PyTrilinos.NOX

Python versions of C++ methods that expect Teuchos::ParameterList arguments accept either
Teuchos.ParameterList objects or python dictionaries.

Since python objects are already reference counted, the Teuchos: :RCP used in the C++ version of
NOX is hidden from python users. Python versions of C4++ methods that accept Teuchos: :RCP<object>
arguments accept raw object arguments in python.

The following NOX namespaces are suported in python:

NOX

NOX.Abstract
NOX.Epetra
NOX.Epetra.Interface
NOX.Solver
NOX.StatusTest

The only NOX Interface class that has a python wrapper is the Epetra interface. As with the
C++ version of NOX, you define a nonlinear problem by declaring a python class that inherits from
NOX.Epetra.Interface.Required. Optionally, your class may also inherit from NOX.Epetra.Interface.Jacobian
and/or NOX.Epetra.Interface.Preconditioner.

Your constructor must call the constructors of its NOX.Epetra.Interface base classes:

class MyProblem(NOX.Epetra.Interface.Required):
def __init__(self):
NOX.Epetra.Interface.Required.__init__(self)

28

http://software.sandia.gov/trilinos/packages/ml

This is necessary because the underlying callback mechanism needs to be properly initialized. The
nonlinear function for your class is implemented by defining a computeF () method:

def computeF(self, x, F, flag):
"Required implementation of computeF() method"

Arguments x and F are passed from the underlying C++ code as Epetra.Epetra_Vector objects
and then converted to numpy-hybrid Epetra.Vector objects when they are passed into your python
computeF () function. Therefore, you can use the numpy.ndarray interface on these arguments, such
as the shape attribute, or slice indexing.

The flag argument is an integer that NOX uses to inform computeF () why it is being called. You
can use this flag to alter how computeF () behaves. See the C++ NOX documentation for details.

We are defining a somewhat complicated python-to-C++-to-python callback scheme here. Unfor-
tunately, error-handling in such an environment is not as rubust as in a single-language environment.
Specifically, if your computeF () (accidentally) raises a python exception, all you may see is:

terminate called after throwing an instance of ’Swig::DirectorMethodException’
Abort trap

For this reason, it is a good idea to wrap your computations in a try block:

class MyProblem(NOX.Epetra.Interface.Required):

def __init__(self):
NOX.Epetra.Interface.Required.__init__(self)

def computeF(self, x, F, flag):
"Required implementation of computeF() method"
try:
F[:] = nonlinear_func(x) # Whatever this may be...
except Exception, e:
print "Python exception raised in MyProblem.computeF:"
print e
return False
return True

This will print the python exception if one is raised, and tells NOX that the computation failed.
Remember to return a boolean indicating success or failure of the computeF () method.

NOX needs to be able to compute the result of the Jacobian of F(x) on a given vector from the
same space as x. The NOX.Epetra.Interface.Required class and computeF() method are sufficient
to estimate this product if you are willing to use the NOX.Epetra.FiniteDifference class. If you want
to use an algebraic preconditioner based on an approximation to the Jacobian, you will want to use
map coloring to greatly improve the efficiency, specifically the NOX.Epetra.FiniteDifferenceColoring
class. See exNOX_1Dfem.py in the example directory of the PyTrilinos package for an example of this
type of implementation.

You solve your problem by first creating an instance of your MyProblem class and an Epetra.Vector
solution (using some appropriate constructor):

problem
soln

MyProblem()
Epetra.Vector(...)

Since we do not inherit from Jacobian or Preconditioner, we need to define a matrix-free linear
system for NOX to use:

29

mf = NOX.Epetra.MatrixFree({ }, problem, soln)

fdc = NOX.Epetra.FiniteDifferenceColoring({ }, { }, soln,
problem.getGraph())

linSys = NOX.Epetra.LinearSystemAztec00({ }, { }, mf, mf, fdc, fdc,

soln)

Note that these calls assume that your MyProblem class defines a getGraph() method that returns
an Epetra.CrsGraph that defines the sparsity/coupling of the nonlinear problem. Also, the empty
python dictionaries result in default parameter specifications. Now we can create a NOX.Epetra.Group
and a NOX.Solver.Manager:

group = NOX.Epetra.Group({ }, problem, soln, linSys)
solver NOX.Solver.Manager(group, statusTest, { })

Here we assume statusTest is a properly constructed NOX.StatusTest object. Now that everything
is specified, we can solve the problem with:

status = solver.solve()

Simple, no?
Actually, an attempt has been made to simplify this process in python, with the definition of the
following functions:

e defaultSolver(initGuess, reqInterface, jacInterface=None, jacobian=None, precInterface=None,
preconditioner=None, nlParams=None) -> Solver

e defaultStatusTest (absTol=None, relTol=None, relGroup=None, updateTol=None, wAbsTol=None,
wRelTol=None, maxIters=None, finiteValue=False) -> StatusTest

e defaultNonlinearParameters(comm=None, verbosity=0, outputPrec=3, maxIterations=800,
tolerance=1.0e-4) -> dict

e defaultGroup(nonlinearParameters, initGuess, reqInterface, jacInterface=None, jacobian=None,
precInterface=None, preconditioner=None) -> Group

Depending on the needs of the problem, sometimes you just build the interfaces and call NOX.defaultSolver (),
which calls the other default functions internally. Other times, building the interfaces requires calling
the other default functions explicitly first. Either way, these functions can significantly reduce the
amount of work requird to build a NOX solver.

16 PyTrilinos.LOCA

The LOCA module is currently disabled. Fortunately, NOX has been re-enabled, meaning most of the
technical issues related to wrapping LOCA have also been addressed.

17 PyTrilinos.Anasazi

The Anasazi Trilinos package makes heavy use of templates, which makes it nearly impossible for the
python interface to track it identically. Anasazi classes are templated on one or more of the following
parameters:

<ScalarType, MV, 0OP>

where ScalarType is a primitive data type specifying the floating point representation of the eigen-
problem, MV is a multi-vector class and OP is an operator class. All Anasazi classes are templated

30

on <ScalarType>. Some are templated on <ScalarType, MV>, and some are templated on all three
parameters.

Currently, PyTrilinos.Anasazi supports only one interface, to Epetra. Thus, the corresponding
concrete C++ instantiations are on:

<double, Epetra_MultiVector, Epetra_Operator>

These are indicated in python by using the Anasazi class name and adding the suffix Double for
ScalarType-only templated classes, or the suffix Epetra for any of the other templated classes. So, for
example:

>>> from PyTrilinos import Anasazi

>>> eig = Anasazi.ValueDouble()

>>> print eig

0+0j

>>> bSort = Anasazi.BasicSortEpetra()

>>> print bSort

<Anasazi.BasicSortEpetra; proxy of <Swig Object of type ’Anasazi::BasicSort<double,
Epetra_MultiVector,Epetra_QOperator > *’ at Ox6eef50> >

An additional layer of abstraction is provided so that these suffixes need not be remembered or used.
Since there is currently only one interface, these suffix-less class names are essentially aliases for their
longer-named counterparts:

>>> eig = Anasazi.Value()

>>> bSort = Anasazi.BasicSort()

>>> print type(eig), type(bSort)

<class ’Anasazi.ValueDouble’> <class ’Anasazi.BasicSortEpetra’>

In the future, if additional interfaces are supported (for example, a NumPy interface), then the
requested interface will be inferred from the constructor arguments, if possible. For those cases where
this is not possible, we will also provide type-specification capabilities that are similar to NumPy.

A second difference between Trilinos Anasazi and PyTrilinos.Anasazi is that any methods that
expect a

Teuchos: :RCP<object>

as an argument, where object is of any type, will take a python object of corresponding type,
without the reference-counted pointer wrapper.

The Anasazi.Eigensolution class has been changed such that the attributes Evals, Evecs and
Espace have been changed to methods Evals (), Evecs () and Espace (). Evals () returns a numpy.ndarray
of type complex double rather than a wrapper to std: :vector<Anasazi::Value<double> >. Also, the
Evecs() and Espace() methods return Epetra.MultiVector objects. Currently, index is still an at-
tribute, and is a python list-like object containing integers. (The other attributes must be implemented
as methods in order to facilitate the type conversions.)

You can create an Anasazi.Value object if you wish, although it is not very functional. It has a
str__() method so that you can print its value.

18 PyTrilinos.Thyra

Only preliminary work has been done on the python interface to Thyra. It is not an operational package
yet.

Generated on: 2010-04-16 18:49 UTC. Generated by Docutils from reStructuredText source.

31

http://docutils.sourceforge.net/
http://docutils.sourceforge.net/rst.html

	Introduction
	PyTrilinos Prerequisites
	Building PyTrilinos
	Known Issues
	PyTrilinos Tutorial
	Epetra
	Teuchos
	EpetraExt
	TriUtils
	Amesos
	AztecOO
	ML

	PyTrilinos.Teuchos
	ParameterList
	XML Support

	PyTrilinos.Epetra
	Fundamental Classes
	Communicators
	Maps
	Vectors
	SerialDense Classes
	Graphs
	Operators

	PyTrilinos.EpetraExt
	Graph Coloring Classes
	Input Functions
	Output Functions
	Input/Output Classes
	Matrix-Matrix Functions
	Model Evaluator Classes

	PyTrilinos.TriUtils
	PyTrilinos.Galeri
	PyTrilinos.Amesos
	PyTrilinos.AztecOO
	PyTrilinos.IFPACK
	PyTrilinos.ML
	PyTrilinos.NOX
	PyTrilinos.LOCA
	PyTrilinos.Anasazi
	PyTrilinos.Thyra

